浏览数量: 22 作者: 本站编辑 发布时间: 2018-07-25 来源: 本站
化学储能材料和器件的三大重要指标,一是能量密度,关系到充放电的持续性;二是功率密度,关系到瞬间释放能量的能力;三是充放电次数,决定了储能器件的寿命。下图给出了铅酸电池、锂电池、锂离子电容、碳基电化学双层电容器EDLC、电解液电容的能量密度、功率密度和充放电寿命等指标。不幸的是,光伏这样极度苛刻的应用场景,对储能系统能量、功率、寿命的要求都非常高!储能系统储能能力、充放电功率,直接影响了对爬坡速率的控制力。
文章的计算涉及到傅里叶变换等烧脑数学工具,此处不再赘述。总之是通过下面的爬坡速率控制模型流程图,可以实现对瞬息万变的光伏出力(图b蓝色区域)的有效平滑(图b红线为平滑后)。图c显示了储能系统在爬坡上升超过10%每分钟速率的时间段通过充电实现爬坡速率的控制(图c靛蓝色区域),而在光伏出力下降超过10%的时间段,通过放电实现控制(土黄色区域),快速响应的能力是对储能系统充放电功率W的考验。而图d是储能系统的充电状态SoC,SoC的幅值考验的是储能系统总储能能力Wh。
不同的光伏系统对于储能系统的要求大不相同。文章考察了单个组件、5千瓦屋顶系统、100千瓦小型光伏电站、以及7.2兆瓦大型电站四个场景。一般而言,大型系统占地面积大,具有一定“地理聚集”(geographical aggregation)的发电出力平滑能力。在江屿的算法中,引入了一个叫做截断频率(cut-off frequency)的东东,通过经验公式考虑到了这个自动平滑的现象。下图看到,越大的系统,其自带发电出力平滑的能力越强,无论是光功率变化的剧烈程度还是频度都有下降!
随着系统的增大,储能系统更多的从能量密度限制,转变成了功率密度限制。也就是说,高功率密度的储能系统更具有优势。在这方面,锂离子电池具有重大的技术优势。目前相较于铅酸电池,锂离子电池成本高处1倍到3倍不等,但是未来具有更大的降本空间。至于电容系列,虽然功率密度足够甚至超过要求,但能量密度距离一整天的发电出力缓冲,相去甚远。研究发现,高能量密度的锂离子电池(低于600瓦时每升)最符合光伏出力缓冲的要求,基本可以100%达到10%爬坡速率控制的要求。
文章还提出了一个非常具有新颖性和吸引力的技术方案——在微型逆变器和组件优化器上集成储能系统。这样既满足了发电出力平滑的要求,又增加了系统整体的发电能力(储能单元使得光伏组件不需要过度偏离组件发电的最佳功率点)。作为一个初步的设想,作者把储能单元体积控制在100立方厘米之内,也即是收入接线盒中。这需要最少400瓦时每升的能量密度,2300瓦每升的功率密度,这已经超出了现今量产锂离子电池可以达到的指标。如果用现今量产的锂离子电池性能指标加以衡量,10%的爬坡速率控制可以达到99.5%的达标率(即每1000次出现爬坡速率超过10%的情况,995次可以得到解决)。
公司名:安徽赛福电子有限公司
邮箱:sunxs@anhuisafe.com
官网:www.acdianrong.com